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GENERAL CHARACTERISTICS OF THE WORK 

 

Rationale and development degree of the topic.  

Theory of optimal control is one the leading fields of modern 

mathematics. It is connected with the solution of large spectrum of 

rather complex mathematical problems and has important 

applications in many fields of science and engineering. This belongs 

on one hand to optimal stabilization problems of technological 

modes characterized by important mathematical compex, on the 

other hand, by many-dimensional linear objects encountered in 

practice. 

The problem of optimal stabilization of any process occupies an 

important place in the row of optimal control problems. Such 

stabilization problems cover a wide range. It should be noted that the 

study of optimal stabilization problems is associated with classic 

methods of stability theory. In special case, by its essence, one of the 

main problems of optimal control theory, the dynamic programming 

method is the combination of variational calculus methods and the 

method of Lyapunov function. Improvement of the Lyapunov 

method has enabled to find efficient for methods for the solution of 

optimal stabilization problems. In their works, Larin V.B., Aliyev 

F.A., Veliyeva N.I. and others have obtained some important results 

for optimal stabilization of the motion of stationary systems. Control 

and optimization problems, in creating modern technology, for 

example control of chemical processes, oil production by gas lifting 

and socker rod pipe (maximum energy production, maximum row 

material, etc.) robots systems, control of spaceships, etc. play an 

important role. In spite of many theoretical researches with linear and 

nonlinear control problems in this field, great attention was paid to 

development of numerical algorithms for creating new technologies.  

Development of a method or an algorithm for solving 

optimization and control problems does not mean that they can solve 

some practical problems i.e. to verify if they work, appropriate 

programs, for example, MATLAB MATHEMATICS and other 

mathematical program packet should be used. It is know that it is 

very  difficult to build analytic solution of optimal control problems. 



 

Therefore, a special attention should be paid to different approximate 

and numerical methods for solving them. According to features of 

problems, one of the suggested algorithm is applied. The solution of 

the problem of statsitical stabilization with respect to output is 

reduced to the solution of two nonlinear matrix equations and it is 

very difficult to solve these equations. The solution of these 

equations is still being researched. It is connected with the fact that 

as problms arise, the demand for these equations is increasing. For 

example, recently the optimal stabilization problems related to the 

movement of unmenned aerial vehicles reduces to the solution of the 

Riccati and Silvester equation. Although these equations were 

studied a lot, some shortcomings remain. These works are relevant in 

terms of application and have a great importance. 

The dissertation work consists of introduction and three chapters. 

In chapter I, solution methods for building optimal stabilizers 

with respect to periodic output for the continuous and discrete case, 

are suggested. In section 1 of chapter I stabilization problems where 

the motion of the subject is described by finite difference relations 

and by the system of differential equations in different parts of time, 

were researched and a solution algorithm was given. 

In section 2 solution methods were developed for the discrete 

case of the problem of periodic optimal stabilization with respect to 

output.  

In section 3, creation of stabilization algorithm for periodically 

controlled systems (continuous and discrete) within the feedback (a 

system for assessing spartial coordinates of a control object) was 

studied. Algorithms influencing  on the character of transition 

process that occurs in the filter by means of some matrices 

characterizing intensity of sound and perturbation acting on the 

object are given and appropriate software was created.  

In chapter II of the dissertation work, an optimization problem 

with a non-separated three point boundary condition was considered. 

Some methods, including the sweep method were offered. 

Application of the solution of this problem in construction of optimal 

stabilization in operation of oil wells by the gas-lift method, was 

studied. 



 

 In section 1 of chapter II an optimization problem with a non-

separated boundary condition at inner and end points was considered, 

a sweep method for solving the appropriate continuous problem was 

offered. 

In section 3, using the constructed mathematical model and 

appliying the straightline method, we obtain a quasiquadratic optimal 

control problem and unlike the initial problem, we give a solution 

algorithm by applying the known solution methods of an optimal 

control problem. 

In chapter III for solving a problem on building output optimal 

stabilizers the methods for solving algebraic Riccati, Silverster 

equations are given.  

For solving the normal state discrete BHH (Bevis-Hall-Hartwig) 

equation, an algorithm based on calculation of linear matrix 

inequalities in MATLAB medium is offered. The obtained result is 

analyzed on an example and the efficiency of the offered method is 

shown. 

Unlike the reduction of BHH matrix equation to the classic Stein 

equation in section 1, a solution algorithm based on linear matrix 

inequalities (LMI) is given.  

It is shown that the LMI algorithm offered for solving the BHH 

equation compared to known method is implemented more easily and 

conveniently. The results are given on examples. In section 2 the 

solution of the Riccati equation is researched in the general case, 

when the stabilizer i.e. all given values of the matrix of the closed 

system are located inside the a unit radius circle and when the anti 

stabilizer, i.e. all eigen values of the matrix of the closed system is 

outside a unit radius circle. The fast iteration scheme of the Riccati 

equation is given by the finite power series both in the continuous 

and discrete case. The iterative scheme was verified by the examples 

covering different cases.   

 Object and subject of the study. The object and subject of the 

study are problems of stabilization with respect to output, 

optimization problems with non-separated three point boundary 

condition at inner and end points. 



 

Goals and objectives of the study. The goal of the dissertation 

work is to work out time and frequency calculation methods of a 

stabilization problem, to elaborate a solution algorithm for an 

optimization problem with non-separated three-point boundary 

conditions at the inner and end points and to apply the obtained 

results in oil production by the gas-lift method.  

To achieve the indicated goal, the solution of the following 

problems was offered:  

 A method for solving a problem of periodic optimal 

stabilization with respect to output in the continuous case; 

 A method for solving a problem of periodic optimal 

stabilization with respect to output in the discrete case; 

 Iterative solution method for a problem of periodic optimal 

stabilization with respect to output in the discrete case; 

 A sweep method for solving an optimization problem with 

non-separated three-point boundary condtion at inner and end points; 

 Application of the solution of optimal control problem with 

three-point boundary condition by the gas-lift method; 

 The method for solving the BHH Silvester equation; 

 A method for solving the Riccati equation. 

Research methods. Optimization methods, numerical methods, 

theory of differential equations, gas-lift method were used for 

solving the stated problems. 

Implementation and application of the results of the work. 

The main results of the work were used in executing grant 

projects on operation of oil by efficient methods. 

The main theses to be defended. The scientific novelties of the 

research and obtained results are the followings:  

 Working out a method for solving output periodic optimal 

stabilization problem in the continuous case ; 

 Working out a method for solving output periodic optimal 

stabilization problem in the discrete case; 

 Working out iterative solution method of output periodic 

optimal discretezation problem in the discrete case; 



 

 Working out a sweep method for solving an optimization 

problem with non-separated three-point boundary condition at inner 

and end points; 

 Application of three-point boundary condition optimal control 

problem to oil production by gas-lift method; 

 Working out a method for solving the BHH Silvecter 

equation; 

 Working out the Riccati equation by the fast iterative solution 

methods. 

Scientific novelty of the study and the theses to be defended. 

A method for solving output periodic optimal stabilization 

problem in the discrete case was developed; 

An iterative mnethod for solving output periodic optimal 

stabilization problem in the discrete case, was given; 

A sweep method for solving non-separated three-point boundary 

condition optimization problem at inner and end points was 

elaborated; 

The solution of three-point boundary condition optimal control 

problem was applied to oil production by gas-lift method; 

A method for solving the BHH Silvester equation was worked 

out; 

A method for solving the Riccatu equation was developed. 

Theoretical and practical importance of the dissertation work. 

Practical importance of the work is that its scientific-theoretical 

results can be applied in other fields of science including in oil 

production industry. 

Approbation and application. Scientific theoretical and practical 

results of the work were reported and discussed at the following 

scientific conferences: 

– The 5th International Conference on Control and Optimization 

with Industrial Applications, 27-29 August, 2015, Baku, Azerbaijan; 

– Scientific seminars of scientific-research Institute of Applied 

Mathematics of Baku State UNiversity; 

– The VI congress of the TWMS, October 2-5, 2017, Astana, 

Kazakhstan; 



 

– Proceedings of the 6th International Conference on Control and 

Optimization with Industrial Applications (COIA 2018); 

– Proceedings of the 7th International Conference on Control and 

Optimization with Industrial Applications (COIA 2020). 

Author’s personal contribution. The obtained results and 

statements belong to the author. 

      Author’s publications. The main results of the work were 

published in 11 scientific papers the list of which is at the end of the 

abstract. 

 The name of organization where the dissertation work was 

performed. The work was performed at the Scientifi research 

Institute of Applied Mathematics of Baku State University. 

 Total volume of the dissertation work indicating separately 

the volume of each structural unit in signs: 

The total volume of the dissertation work consists of-210360 

signs (title page – 470 signs, contents – 960 signs, introduction – 

17931 signs, chapter I -68000 signs, chapter II -78000 signs, chapter 

III-44000 signs, conclusion-822 signs). The list of ised references 

with 152 names. 

 

 CONTENT OF THE WORK  

 

In the introduction  the rationale of the work was commented, the 

bases of the conducted work were underlined, theoretical and practical 

importance of the work was reflected, the theses to be defended were 

indicated, the content and structure of the work, the desired conclusions 

to be defended were described. 

Chapter I was devoted to the method for solving an output periodic 

optimal stabilization problem. 

In section 1 of chapter I the solution of the stabilization problem 

where the motion of the object is described by both finite-difference 

relations and by the system of differential equations at different parts of 

time was considered.   

 Let in the interval   ,...,2,1k,kt1k    the motion of the 

control object be expressed by the following system of differential 

equations  



 

BuAxx                                                        (1.1.1) 

at the moment kt   be described by the finite difference relations 

 

)()0()0( kMvkNxkx                            (1.1.2) 

It is required to find such continuous and impulsive control strategy 

that the object +regulator closed system  

,))0(()()),(()(   kxkvtxftu  

be asymptotically stable and afford minimum (quality criterion) 

value to the following quadratic functional: 

  
 





0t 1k
0 )k(Cvkvdt)RuuQxx()t(I  .        (1.1.3) 

Here the matrices 0,0,,  QQRRBA -are of period   with 

respect to the variable t  the matrices 0CC,M,N   are 

constant ux,  are spartial coordinates of appropriate dimension and 

are the vectors of control action. 

Using the solution of the linear Quadratic Gauss method, we find the 

minimum of the functional (1.1.3) by using the method of finding the 

quadratic form 

)t(x)t(S)t(x)t(Imin 0000
v,u

 . 

here  kt    in the interval )1( k is found by the formula 

SxBRu 1   ,                                        (1.1.4) 

in the interval kt   by the formula 

).0k(Nx)0k(SM)CM)0k(SM()k(v 1        (1.1.5)  

The matrix S is found in the interval )1( k   kt   from the 

following differential Riccati equation 

QSBSBRSASAS  1 .                  (1.1.6) 

The jump of this matrix at the moment  kt    is expressed by the 

following expression

   

 .N)0k(SM

M)0k(SMCM)0k(S)0k(S(N)0k(S
1








         (1.1.7) 



 

So, to determine optimal strategy of control we have to find such a 

periodic  (of   period) matrix S  that the equations (1.1.6) , (1.1.7) 

be satisfied and the systems (1.1.1), (1.1.2), (1.1.4), (1.1.5) be 

asymptotically stable. An algorithm for solving this problem was 

suggested. 

In sections 2 of chapter I a method for solving a periodic optimal 

stabilization problem in the discrete case was considered and an 

algorithm was offered. Let us study a problem on analytic contruction of 

stabilizers for a discrete periodic system.  

Assume that the motion of the object was given by the system of 

finite differences equation 

    ,...2,1,0i),i(u)i()i(xi1ix              (1.2.1) 

Choosing appropriate control (regulator equation) strategy  

))i(x(f)i(u                                              (1.2.2) 

within the condition 0)0(x   it is required to provide the stability of 

the system  (1.2.1) and (1.2.2)  ( 0)i(lim
i




) and the quadratic 

functional 

  





0i

)i(u)i(R)i(u)i(x)i(QixI .                (1.2.3) 

take a minimum value. 

Here )i(u),i(x  are spartial coordinates and the vectors of control 

action,     0)i(R)i(R,0iQ)i(Q),i(,i  ,p are periodic matrices, 

i.e. the periodicity conditions     )i()pi(,ipi   , are 

satisfied. 

    It is known that the control of optimal regulator (1.2.2) is as 

follows :
 

  )i(x)i()1i(S)i()i(R)i()1i(S)i()i(u
1

 
 .   (1.2.4) 

The sequence of symmetric S  matrices in optimal control law is 

defined from the following recurrent relation  

 .)()()1()())()1()()()()1()1()()( 1 iQiiSiiiSiiRiiSiSiiS    (1.2.5) 



 

   So, to define the control law (1.2.4) it is necessary to find one of 

the sequences of matrices  iS  satisfying the condition (1.2.5).  

  As the matrices in the condition of the problem are periodic, 

shifting the initial moment of the process to the index p  ( ,...1p,pi 

) the strategy of the control will not chage. Therefore, the sequence 

of desired matrices should satisfy the periodicity condition

)i(S)pi(S   After making some transfunctions   

  

    

,0)0,i(D

),in()in(R)in(

)in()n,i(D)ni(Q)n,i(DEin)1n,i(D

,E)0,i(

),n,i()ni(Q)n,i(DEni)1n,i(

1

1

1

























 

   
.0)0,i(Q

),n,i()ni(Q)n,i(DE)in(Qn,i)n,i(Q)1n,i(Q
1





  

the discrete algebraic Riccati equation will take the following form  

  

     
11

( ) , ( ) ( ) ( , ) ( ( , )) ( ) ( , )

( ( , )) ( , ) ( ) , ( , ).

S i i p S i S i D i p D i p S i D i p

U i n D i p S i i p Q i p






   


 
       (1.2.6) 

 Theorem. If the matrix  (1.2.6)  

   ,)p,i()ip(S)p,i(DE
1



  

that determines the change of vector space of the closed system ob-

ject-regulator has a solution whose eigen values are inside a unit ra-

dius circle, then the system of equations (1.2.1), (1.2.4) 

asymptotically stable and these values )i(S  express the desired 

periodic sequence. 

In section 3 of this chapter the construction of stabilizarion algorithm 

of periodic systems within feedback (the system for estimation of spatial 

coordinates of the controlled object) is shown for a linearly periodically 

controlled (continuous and discrete) system.  

In section 4 of chapter I an algorithm for solving the output linear-

quadratic periodic optimal regulator feedback problem. The solution 

of such problems was considered in the papers of Bittanti S.H., 



 

Levine W.S., Athans M., Aliev F.A., Safarova N.A. In the papers of  

Peres P.L.D., Geromel J.C. a convex programming device, in the 

papers of Aliev F.A., Larin V.B the associated gradients method are 

used. In these works, each time the Lyapunov equation is solved and 

sometimes this can negatively effect on the exactness of the solution. 

In this section an iteration algorithm for solving the output optimal 

regulator problem is applied and it is not reguired to solve Lyapunov 

matrix algebraic equations at each step.    

Cahepter II.  In this chapter we consider a three-point boundary 

condition optimization problem not separated at inner and end points. 

To determine the boundary conditions that miss because of non-

ctandard property of boundary conditions, we use initial data of 

Lagrange polynomial. 

In section 2 of chapter II a sweep method for solving appropriate 

continuous problem is offered, i.e. the solution of the Riccati matrix 

differential equations and also the solution of linear matrix differential 

equations are used. 

This method differs from other ones with the fact that in this 

approach we need not to increase the dimension of the initial system. 

It is known that one of the main methods for finding program 

trajectories in oil production (Aliev F.A., Ilyasov M.Kh., Jamalbekov 

M.A.) and in operation of robots (Larin V.B.) is the use of the solution 

of three-point boundary condition optimization problem. Usually, in 

many cases, boundary conditions are given in not-completely separated 

form or at some points separated boundary conditions are given. Such 

problems occur in oil production by the gas-lift method or  when 

chosing the volume of gas injected to extract gas-fluid mixture. 

The case when the initial data of the boundary conditions are 

complete and not separated at inner and end points are especially of 

interest. 

Assume that on the interval ],(,),0[ T  the equation of motion of 

the object is described by controlled nonstationary system of linear 

differential equations 
.

x Fx Gu v                      (2.1.1) 

here the solution should satisfy the initial condition 



 

0)0( xx   ,                                         (2.1.2) 

and the points T,  the coordinates )(),( Txx   should satisfy the not 

separated boundary conditions  

)()( TBxAx  .                                     (2.1.3) 

Let us construct a quadratic functional as follows: 

 
T

f dttCututRxtxTxSTxJ
0

)]()()()([
2

1
)()(

2

1
,  (2.1.4) 

here 0,0,0'  CCRRSS ff , are the given matrices of 

appropriate dimension, the sign of prime indicates the transposition 

operation. 

So, it is reguired to find the solution of the problem, (2.1.1) - 

(2.1.3) that affords a minimum value to the functional  (2.1.4). 

Now, let us express the solution algorithm for the problem 

(2.1.1)-(2.1.4). 

1. We are given the matrix’s , , , , , ,fF G R C S A B   and the 

vectors 
0),( xt . 

2. The Cauchy problem is solved and on the interval ],0( T  

the functions )(),(),( ttNtS  are found. 

3. From 














)0()0(

)0()0(

)0()0(







ANN

SS

 

)0(),0(),0(   NS are determined. Using these initial 

values on the interval ]0,0(   we find the functions 

)(),(),( ttNtS  . 



 

4. Solving the equation 

.

.

( ) ( ) ( ) ( ) , ( ) 0

( ) ( )[ ( ) ( )], ( ) 0

n t N t M t N t n T

W t N t M t v t W T

  

   

 

within the conditions )(),( tWtn  we find the functions  

( 0) 0, ( 0)n W     on the interval (0, ), 0, )T   . 

5. We determine (0), ( ),x   from the system of algebraic 

equations.  

6. Solving the equation  

   
.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .x t F t M t S t x t M t N t t M t t        

within the initial conditions )0(x we find the function )(tx . 

7. According to the formula  

)()()()()()()()()()()( 111 ttGtCtNtGtCtxtStGtCtu     

we determine the desired control . 

In section 2 of chapter II we offer a solution algorithm for a 

discrete optimal control problem with not separated three-point 

boundary conditions at inner and end points. 

It is shown that such boundary value problems can be applied 

to some practical problems including operation of oil wells by the 

gas-lift method. 

If the control u  is a piecewise constant function and  

CRGF ,,,,   are constant matrices, the continuous optimal control 

problem, (2.1.1)-(2.1.4) can be easily reduced to the discrete problem  

1 , 0,1,..., 1, , 1,..., 1i i i i i ix x u v i s s s l               (2.2.1) 

0x x                        (2.2.2) 

s lAx Bx            (2.2.3) 

here the matrices  iii v,,  are determined as follows 

.)(,)(,
0

1 GdeEeFve F

i

F

i

F

i  




   



 

 
1

0

1 1

2 2

l

l f l i i i l i i

i

J x S x x R x u C u




        (2.2.4) 

As in the continuous case, the solution of the problem (2.2.1-

2.2.4) can be found in a similar way.  

In this case:  

)()()()()( TTNTxTST    

is found in the form of 

   
.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .x t F t M t S t x t M t N t t M t t         

and SS, NS   is found from the relations 

 
1

1 1s s s s s s sS R S E M S 


 
                       (2.2.5) 

 
1

1 1 1s s s s s s sN A E S E M S M N


  
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In section 3 of chapter II the solution algorithm of a three-point 

boundary condition optimal control problem and its application to oil 

production by the gas-lift method, was studied. In this section, an 

optimal control problem with a boundary condition with not 

separated inner and end points was studied and statement of 

boundary conditions in this form is connected with the existence of 

some concrete problems, including applications of the gas-lift 

method in oil production. 

When operating the well by the gas-lift method, an calculated 

algorithm to study and control its operation mode was prepared. To 

state an optimal control problem corresponding to the gas-lift process 

it is necessary to built  a mathematical model of operation of wells by 

the gas-lift model.  

One of the problems of the gas-lift process is complete 

production of gas-lift mixture formed in the botton of the lift, in the 

form of output. Practice shows that only 38% of gas-fluid mixture is 

extracted from the well in the form of output. To get maximum 

output by injecting minimum gas volume it is offered that the volume 



 

of the gas-fluid mixture in front of and at the end of the lift be equal, 

(i.e. the periodicity condition should be fuldilled) this means that 

QMQ is completely transmitted from the mixture zone to the well. 

In this section, using the built model and the straightline 

method we obtain a linear quadratic optimal control problem and 

unlike the initial problem we can apply the known solution methods 

of optimal control problem to this problem. The straightline method 

is based on the assumption that the oil-well tubing consists of finitely 

many pieces of certain lengt hand in each on them one can get 

ordinary differential equations. Here the injected gas is taken as a 

control parameter, the injected gas and is functional dependent on the 

output of the well is taken as a minimized functional. 

Thus, the optimal control problem consists of minimization of 

the injected gas volume anbd obtaining maximum value of the well 

output. 

When operating the wells by the gas-lift method, gas is 

continuously injected. For bubbly fluid gas structures the model of 

the operation of the gas-lift well is approximately described by the 

followoing system of partial differential equations, i.e.  the gas-lift 

process is expressed by the system  
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here  Lxt 2,0,0  , L is the well depth, F  is the area of cross-

section of piping along the axis x , c  is the light speed in gas or gas-

fluid (GFM) mixture, а is a hydraulic resistance, P  and Q  is the 

excess pressure velocity of change of the fluid volume. 

Note that in the equation (2.3.1) the coefficients  F , c , a  are 

determined as follows: 
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Assume that a pipe of length L  consists of N  number pipes 

of the length  Nkl ,1 . If in each segment we accept the relation 
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Then we can write the system (2.3.1) in the form of ordinary 

differential equations 
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The volume and pressure consumed in the lift bottom can be 

shown as follows 

PlnNPlnN QQQPPP 
~

,
~

                     (2.3.3) 

 

Taking into account the expressions (2.3.3) in the equations 

(2.3.2) we obtain the following equations characterizing this process 

in the lift, i.e. in the domain corresponding to the part NNk 2,1   

    NkQtQPtP kkkk 2,0, 0
0

0
0                                           (2.3.4) 

Thus, the get the Cauchy problem for the system of first order 

ordinary differential equations. 

We can show the problem (2.3.2)-(2.3.4) in the following matrix 

form: 

  GuFxx , 
0)0( xx  ,                                          (2.3.5) 

 )()( 2 TQQ NN  ,  T                                                        (2.3.6) 

In fact, the conditions (2.3.6) provide compression of gas-fluid 

mixture without loss in the lift. Denote    
'

221111 ],,...,,,,,...,,[ NNNNNN QPQPQPQPx     

'
2

0
2

0
1

0
1

0000
11

00 ],,...,,,,,...,,[ NNNNNN QPQPQPQPx  .  

 It is reguired to find a solution of the problem (2.3.1), (2.3.4) 

that affords a minimum to the functional  
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We can offer the following algorithm: 

1. We are given ,0x ,,,,,,, TSCRaLc f . 

2.  The functional ,, FG are determined. 

3.  We find 
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5.  The vector e and the matrix M are formed:  
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6. Solving the equation       we z find the vector: 

]),(),(),0(),0(),(),0([  TTxxz 
  

7. We find the quantities )0(),0( x of the vector z . 



 

8. The system of differential equations  ;
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is solved in the interval )(,)0[ T  and the functions )(),( ttx  are 

determined. 

9. Control actions u , )0(),( x are found from the formula 

,1 GCu   . 

In chapter III  an algorithm based on the process of 

calculation of linear matrix inequalities in MATLAB medium is 

offered to solve the discrete BHH equation. At the same time, 

solution algorithm of the algebraic Riccati equation is given. The 

result is analyzed on an example and  the efficiency of the offered 

method is shown. 

In section 1 of chapter III  unlike the reduction of the BHH 

(Bevis–Hall–Hartwig) matrix equation to the classic Stein equation 

X AXB C   a solution algorithm bvased on the linear matrix 

inequalities (LMI) is given. It is shown that the LMI algorithm 

offered to solve the BHH equation is implemented simply and 

conveniently than the known methods. The results are shown on 

examples. 

Let us consider the BHH Silvester equation. 

X AXB C                             (3.1.1) 

Reducing the equation (3.1.1) to the Stein equation 

( ) ( )X AA X B B C AC B                       (3.1.2) 

 İt can be solved by applying the standard dyap m procedure of 

MATLAB system. 

Here the coefficients B,A  are adjoint normal matrices i.e. 

BBBB,AAAA    . 

The matrices A  and B  are  mm  and nn  dimensional, 

respectively, the desired C  and X  matrices are nm  dimensional. 



 

Applying the LMI algorithm, we can annihilate the procedure (3.1.2) 

and directly solve equation (3.1.1). 

At first assume that in the equation  (3.1.1) A , B  and C  are 

complex matrices and are expressed in the form of   

1 2 ,A A iA 
1 2 ,B B iB  1 2C C iC  , 1 2X X iX                  

Then from equality of real and imaginary part of the equation (3.1.1) 

we obtain the following algebraic equations 
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   according to the 

matrix inequality we can find the solution of the equation (3.1.1) 

from the following inequality  

1 20, 0, 0X X Y    

1 2 2 1 2 1 2 1 1 1 1 2 2 2 2T C X A X B A X B A X B A X B       

2 1 1 1 1 1 2 2 1 2 1 2 1 2 1T C X A X B A X B A X B A X B       

In section 2 of chapter III an effective method for solving the 

algebraic Riccati equation in discrete and continuous case is offered. 

At the same time, the stabilizing and anti-stabilizing solutions of the 

Riccati equation were studied by the method of infinite power series. 

The solution algorithm was verified by many examples in the 

MATLAB mathematical programs packet and a software was 

created. 

Let us consider an algebraic continuous Riccati equation 

 

(3.2.1) 

 
01   RSGSGCSFSF



 

here  are  and  dimensional matrices, respectively, 

and the pair of matrices ( ) is a stabilizer. , 

  are   and  dimensional square matrices, 

respectively, ( ) is a detected pair. To find the solution of non-

negative  (the eigen-values ) are located in the 

left half-plane, we use the following method.  

 Using the Newton-Raphson algorithm, we apply the iterative 

solution method to the equation (3.2.1). The equation (3.2.1) is 

solved by reducing to the solution of the Liapunov equation making 

some transformations. For the first time the solution of the following 

Liapunov equation was considered 

 QSFSF                                          (3.2.2)  

In the Liapunov equation F  and Q  are the given contant matrices, 

SS   is a desired matrix satisfying the symmetricity condition. To 

solve this equation an infinite series method was applied. This is 

mainly is applied when the dimension of the matrix is great and 

eigen-values of the matrix F are located on the left half-plane. 

Accept the denotations    FEu;FEu
1




  and 

Quu2R  , then the equation (3.2.2) is reduced to the discrete 

Liapunov equation  

QSS                                   (3.2.3) 

If in the equation (3.2.2) the eigen values of the matrix F  are 

located in the left half-plane, then eigen-values of the matrix   in  

(3.2.3) are located inside a unit radius circle. The series   

 ...R)(R)(R)(RY 3322                           (3.2.4) 

converges and is the solution of the equation  (3.2.3) . 

For that the iteration scheme is built as follows. 
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İt is seen from the iteration scheme that with increasing the value of 

k the order of summable terms of the series doubly increases. The 

iterative scheme of the equation (3.2.3)  

QSS ii   1  .                                      (3.2.6) 

Theorem. If in the iterative scheme (3.2.6) the characteristic 

numbers of the matrix    is located inside a unit cirle, then the 

solution iS  i of the equation (3.2.6) converges to the solution S  

for the values k32 2;...,2;2;2i   of a unique solution of the equation 

(3.2.3).  

Applying such a iteration scheme to the discrete algebraic 

Riccati equation, we build a solution scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Main results 

 

As a result of researches carried out in this dissertation work, we 

obtained the following results: 

 A method for solving an output periodic optimal stabilization 

problem for a continuous case was offered and a calculation 

algorithm was worked out; 

 A method for solving an output optimal periodic optimal 

stabilization problem for a discrete case was offered and on 

calculation algorithm was worked out; 

 An iterative solution method for an output periodic optimal 

stabilization problem was elaborated; 

 A sweep method for solving an optimization problem with 

nonseparated three-point boundary condition at inner and end points 

was developed and appropriate solution algorithm was worked out; 

 The solution of three-point boundary condition optimal control 

problem was applied to the oil production by the gas-lift method and 

appropriate calculation algorithm was worked out; 

 A method for solving the BHH Silvester equation was worked 

out; 

 Fast iterative solution method for the Riccati equation was 

elaborated. 
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